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TABLE II
EFFECTIVE DIELECTRIC CONSTANT FROM THIS PAPER AND

[6] USING FIVE BASIS FUNCTIONS FORJz AND

FOUR FOR Jx ("r = 8; W=H = 1; �r = 1)

Here,I0 andK0 are modified Bessel functions of the first and second
kind of order zero. This completes the evaluation of the asymptotic
terms. Note that we are not particularly concerned with the Green’s
functionG itself, but rather with the evaluation of the integrals, which
naturally involveG, as they affect the solution.

IV. NUMERICAL RESULTS

SAT is used to determine the effective dielectric constant of the
microstrip line of Fig. 1.

The effective dielectric constant of a microstrip line of aspect ratio
W=H = 1 was determined for different values of the ratioH=�0.
Table II summarizes the results obtained from five basis functions
for Jz and four basis functions forJx. The agreement between the
results from this paper and those presented in [6] is excellent.

The numerical evaluation of the integrals with the proper asymp-
totic term subtracted and integrated in closed form was carried out
using Gauss quadratures. All wavenumbers�, � are scaled in unit of
the wavenumber in free spacek0. The upper limit of integration over
the thus scaled variable� was determined as the maximum of2�r and
8��0=H. These two numbers are chosen to guarantee that all terms
in the Green’s dyadics have reached their asymptotic expressions,
thereby leaving vanishing integrands for values of� larger than this
upper limit.

The root of the determinant was located using the bisection method
where the root is first bracketed starting from a value equal to the
dielectric constant.

To reduce CPU times, the Fourier transforms of the basis functions
are evaluated only once at the beginning of the program and stored
in the computer’s memory. Indeed, these are independent of� and
keep the same values at each iteration in the search for the root of the
determinant. Overall, 96 Gaussian points were used over the interval
of integration, thereby requiring a memory space of the same size
for each basis function. Within this implementation, the CPU time
required to determine the effective dielectric constant is less than
100 ms per frequency point on an ULTRASPARC machine.

V. CONCLUSIONS

An SAT was introduced and applied to accelerate the analysis
of dispersion properties of microstrip lines by the spectral-domain
approach. Asymptotic forms of integrands are selectively extracted
and evaluated in closed form without introducing additional numerical
pathologies. Numerical results obtained from this approach agree well
with those in the literature. A substantial reduction in CPU time is
achieved by computing the Fourier transforms of the basis functions
only once, in addition to subtracting the asymptotic parts of the
integrands.
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On the Use of Linear-Prediction Techniques to Improve
the Computational Efficiency of the FDTD Method

for the Analysis of Resonant Structures
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Abstract—Linear-prediction (LP) techniques are used to accurately and
efficiently compute the frequencies and damping factors of microwave
resonant structures from their transient response, which was previously
obtained by using the finite-difference time-domain (FDTD) method. The
LP equations are formulated in terms of a total least squares (TLS)
problem and are solved by using the singular-value decomposition (SVD)
algorithm. This approach confers robustness to the LP method, improves
the spectral resolution, and provides a simple criterion for selecting the
order of the LP model. We illustrate these characteristics of the LP
method by applying it to two types of problems: the determination of the
propagation constants of waveguides loaded with lossy dielectrics, and
the calculation of the resonant frequencies of cylindrical cavities loaded
with dielectric ring resonators.

Index Terms—FDTD, Maxwell solver, numerical methods.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is a powerful
numerical technique, which is currently used for the analysis of a
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wide variety of electromagnetic problems. For a given excitation
waveform, this method directly provides the time-domain response
of the structure under analysis. However, the spectral response
is usually required for computer-aided design (CAD) purposes in
microwave circuits. Traditionally, the frequency-domain results have
been obtained by computing the fast Fourier transform (FFT) of the
time-domain data. The main disadvantage of the FFT approach is
the distortion of the spectral response that results from applying this
approach to an FDTD response truncated in time. Therefore, the full
FDTD response must be computed to obtain reliable results. Unfortu-
nately, due to their highQ-factor, microwave circuits usually exhibit
a very long transient response, which leads to time-consuming FDTD
simulations. This limitation is particularly dramatic in resonant-type
problems, where the accurate determination of the number of peaks
in the spectral response (their locations and widths) is of capital
importance.

To overcome the limitations of the FFT approach, a number of
alternative spectral-analysis procedures have recently been proposed
[1]–[7]. Roughly speaking, these methods are based on fitting the
early FDTD response to a model. This allows the remaining part
of the time-domain response to be computed by extrapolation, thus
avoiding truncation problems. Additionally, the spectral response can
be derived analytically by simply taking thez-transform of the model.
The main problems with these methods are the difficulty involved in
determining the order of the model, and their sensibility to noise in
the data.

This paper discusses the application of the linear-prediction (LP)
technique, which allows the parameters of interest to be extracted
accurately and efficiently from the early FDTD response of resonant-
type problems. These parameters are usually the resonant frequencies
and the damping factors (orQ-factors) of the structure. The LP
equations are formulated in the total least squares (TLS) sense and
solved by using the singular-value decomposition (SVD) algorithm.
This approach confers robustness to the LP technique and provides
a simple and effective criterion for the selection of the order of the
model. To illustrate the application of this technique, we have consid-
ered two types of resonant problems: the determination of phase and
attenuation constants of waveguides loaded with lossy dielectrics, and
the computation of resonant frequencies of cylindrical cavities loaded
with dielectric ring resonators. For the first problem, the results are
compared with those obtained using a commercial simulator based on
the finite element (FE) method, while for the second one, comparisons
are made with data available in the literature. For both cases, the
agreement is found to be good.

II. BACKGROUND OF LP TECHNIQUES

A. The Underlying Signal Model

For a resonant structure, the FDTD transient response recorded at
a fixed spatial point can be expressed as a superposition of complex
exponentials

y(k�t) � yk = xk + nk =

P

i=1

hi exp[(�i + j2�fi)k�t] + nk;

k = 0; � � � ; N � 1 (1)

where�t is the FDTD time step,k is the time index, andyk denotes
the observed FDTD sequence of lengthN . The model parametershi,
fi, and�i represent the complex amplitude, frequency, and damping
factor of the ith resonant mode, respectively. Sinceyk is a real-
valued sequence, the complex exponentials occur in conjugate pairs;
hence, the order of the modelP is twice the number of resonant
modes. The sequencenk accounts for the finite-precision errors of the

FDTD simulation, the presence of nonexponential signals inyk, and
even exponential terms not included inxk. The complex quantities
zi = exp(�i + j2�fi)�t are the poles of the noiseless signalxk.

B. The LP Technique

In this paper, an indirect method—the LP technique—is used to
obtain the parameters of (1). This technique can be summarized in
the following steps.

1) The true orderP is not usually known beforehand, so an initial
estimation ofP , denoted byL, is chosen.

2) A TLS–LP problem is built up from the available time-domain
data. For lossy structures, the backward approach is chosen,
which leads to an(N �L)� (L+1) homogeneous system of
linear equations. However, for lossless nonradiative structures,
the forward–backward LP technique is used, resulting in an
2(N �L)� (L+ 1) homogeneous system of linear equations
[8].

3) The above TLS–LP problem is solved by using the SVD
algorithm. The number of underlying exponentials (P ) is
estimated to be the number of the largest singular values of the
data matrix. This is a simple and effective way to determine
the order of the model, and is, in fact, a true noise-filtering
process of the time-domain data [9].

4) The z-transform of the LP model is obtained. This allows
the discrete-time Fourier transform of the time-domain data
to be calculated without truncation problems by evaluating
it on the unit circle of thez-plane. This procedure may be
used in applications such as the calculation ofS-parameters of
microwave structures because, in these cases, only the shape
of the spectral response is required. However, in resonant-type
problems, the contribution of each single exponential term of
(1) to the whole spectral response must be determined. To
do this, the poleszi of the z-transform of the LP model are
computed.

5) Once theL poles zi have been calculated, theP poles
corresponding to the underlying exponentials must be separated
from the others. For the backward formulation, the signal poles
corresponding to the exponentials fall outside the unit circle
in the z-plane, while the other poles remain inside the unit
circle [10]. For the forward–backward formulation, theP poles
closest to the unit circle are the signal poles [11].

6) Finally, the resonant frequencies and damping factor are com-
puted directly from the signal poles.

III. A PPLICATION OF THE LP TECHNIQUE TO FDTD RESPONSES

A. Full-Wave Analysis of Guiding Structures

To obtain the dispersion characteristics of a uniform guiding
structure, we adopt a transverse resonance approach [12], [13]. This
approach consists of selecting a value of the phase constant� as
an input parameter. The time-domain response to a given excitation
waveform is computed and, finally, the resonant frequenciesfi and
damping factors�i of the resonant modes are obtained by applying
the techniques described in Section II. The pair of parameters(fi; �i)
corresponds to theith propagating mode in such a way that at
frequencyfi this mode has the value of� previously selected, and
a value of the attenuation constant given by�i = �i=vgi, wherevgi
is the group velocity. By changing the value of� and repeating this
process, we can obtain the whole dispersion diagram.

To illustrate the application of the LP technique to compute the
resonant frequencies and damping factors, we first consider the
calculation of the dispersion characteristics of theTEn0 modes of
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Fig. 1. Singular values for theTEn0 modes of WR-90 waveguide filled
with a dielectric of�r = 1 and� = 0:001 S/m. FDTD mesh: ten unit cells.
LP input parameters:N = 100, D = 1, andL = 50.

Fig. 2. Poles of the LP model for the same case as in Fig. 1.

Fig. 3. Spectral response for the same structure as in Fig. 1.

a WR-90 waveguide completely filled with a lossy dielectric material
of dielectric constant�r = 1 and conductivity� = 0:001 S/m. This
structure is discretized using an FDTD mesh of only ten unit cells.
Initial conditions are imposed at the grid pointx = 3�x, where�x is
the spatial step. The FDTD response for� = 158:24 rad/m (the exact
value of� for theTE10 mode at 10 GHz) is recorded atx = 7�x.
In this case, as a consequence of the chosen spatial discretization
and of the simplicity of the structure, we know beforehand that the
number of resonant modes is nine and, hence, the order of the model
is P = 18. To verify this value, we have carried out an SVD of
the data matrix by using the first 100 samples of the FDTD response

Fig. 4. Singular values for theTEnm modes of a WR-90 waveguide filled
with a dielectric of�r = 1 and� = 0:001 S/m. FDTD mesh: 10� 10 unit
cells. LP input parameters:N = 400,D = 1, L = 200. Three different cases
are shown: using initial conditions, Gaussian pulse, and low-pass filtering of
the FDTD response.

and a value for the initial order ofL = 50. The singular values,
computed by using the backward LP formulation, are shown in Fig. 1.
They have been sorted in decreasing order. As expected, there are 18
dominant singular values, which determine the order of the model. A
large gap is observed between the dominant singular values and all
the others. Fig. 2 shows the poles of the LP model. They have been
reflected with respect to the unit circle of thez-plane, so that the poles
having modulus less than one correspond to the waveguide modes.
For clarity, only half of the poles have been plotted, the remaining
poles are their complex conjugates. Finally, the spectral response
of the structure is plotted in Fig. 3 for the whole Nyquist range.
There are two curves: the solid curve was obtained withP = 18

(the correct order), and the dashed curve withP = 12 (retaining
the first 12 singular values). It can be seen that an underestimation
of P produces a true filtering of the spectral response. We have
observed that the highest singular values belong to the modes with
the largest amplitudes; therefore, the filtered modes are those that
have the smallest amplitudes. However, this filtering process affects
all modes, in this case, mainly acting on their damping factors.

For more complex structures, the number of excited modes and,
hence, the order of the model, is usually excessively large. For
example, if we simply consider the same WR-90 waveguide of the
previous example as a two-dimensional (2-D) problem and use a
discretization of 10� 10 cells, the expected number ofTEnm
modes is 81. To overcome this problem, we propose two different
alternatives: using a Gaussian pulse to excite the problem structure
or applying a low-pass digital filter to the FDTD response. Both
approaches allow us to greatly attenuate the higher order modes.
These modes are not of interest because they are not resolved with
enough accuracy by the FDTD mesh. Fig. 4 shows the singular values
obtained for this example with an initial order ofL = 200. When
using initial conditions, a nonabrupt transition is observed between
the dominant singular values and all the others. For nonabrupt
transitions, it is better to overestimateP , say,P = 142 for this case.
If the guide is excited with a Gaussian pulse, we observe an additional
gap, which is due to the fact that the Gaussian excitation concentrates
the energy on the modes with lower resonant frequencies. This allows
us to consider as dominant modes those that correspond to the first
gap, so we can take a model order of aboutP = 20. The same
situation is found when the time-domain signal is low-pass filtered.
The higher the attenuation of the filter, the larger the gap obtained in
the magnitude of the singular values. For a larger gap, the accuracy
obtained in the exponential model parameters is better. Both the pulse
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Fig. 5. WR-90 waveguide loaded with twoH-plane dielectric slabs.
A = 22:86 mm, B = 10:16 mm, W = A=4, S = A=8, H = B=6,
�r = 12, � = 0:1 S/m.

Fig. 6. Singular values for the structure shown in Fig. 5. FDTD mesh:
48� 36 cells. Excitation: Gaussian pulse. LP input parameters:N = 200,
D = 10, andL = 100.

excitation and filtering approach are techniques that effectively reduce
the order of the model. Furthermore, these techniques allow lower
values forL to be used, improving the efficiency of the LP method.

As an example of a structure of more practical interest, we have
considered a WR-90 waveguide loaded with twoH-plane dielectric
slabs. This structure is depicted in Fig. 5. The simulations were
carried out for � = 183:17 rad/m. The time-domain response
was obtained by using a Gaussian excitation with a length of 400
FDTD samples. To perform the spectral analysis of the FDTD
response, we consider a window of 2000 samples (from the 500th
to the 2500th FDTD iteration). The time samples recorded while the
excitation was switched on are not considered. Since FDTD usually
gives oversampled responses, the data contained in the window are
decimated with a decimation factorD = 10. In other words, only one
in every ten samples is retained and, as a consequence, the number
of samples is reduced toN = 200. Fig. 6 shows the singular values
obtained withL = 100. From this figure, we estimate a model order
of P = 40. The spectral response obtained for this case is plotted
in Fig. 7. Table I shows the results obtained for the frequencies,
damping factors, and attenuation constants of the first two modes
of this structure. We have considered four different discretizations
given by8l� 6l wherel is a parameter that takes values 3, 4, 5, and
6, as shown in Table I. The curve

�(l) = A+
B

l
+
C

l2
(2)

has been used to model the convergence behavior of the results
as a function ofl, where� is the parameter of interest (frequency
or attenuation factor) andA, B, and C are the constants to be
determined. The extrapolated values forl = 1 are also shown in
Table I. These values are in excellent agreement with those obtained
using a commercial simulator based on the FE method.1

1High-Frequency Structure Simulator,Release 3.0, Hewlett-Packard, Santa
Rosa, CA.

TABLE I
COMPARISON OFRESULTS FOR THEWAVEGUIDE SHOWN IN FIG. 5 OBTAINED

BY USING THE FDTD METHOD WITH SEVERAL SPATIAL DISCRETIZATIONS

GIVEN BY 8l � 6l, AND BY USING THE HIGH-FREQUENCY

STRUCTURE SIMULATOR (HFSS)

Fig. 7. Spectral response for the waveguide of Fig. 5 for� = 183:17 rad/m.

Fig. 8. Cylindrical cavity loaded with two dielectric ring resonators.
�r1 = 1:031, �r2 = 24:3, R2 = 2:455 mm,R1 = 0:3R2, R3 = 2:39R2,
H = 3:61 mm, S = 2H.

B. Characterization of Dielectric Resonators

The second resonant-type problem addressed in this paper is
the characterization of cavities loaded with dielectric resonators. In
particular, we consider the computation of the resonant frequencies
of the TE01 modes of a cylindrical cavity loaded with two ring
dielectric resonators, as shown in Fig. 8. An accurate determination of
the resonant frequencies is important in order for the mutual coupling
factor of the resonators to be obtained. This can be done by taking
advantage of the symmetry of the structure. First, the problem is
solved with a perfect electric wall in the symmetry plane; then, it is
solved again with a perfect magnetic wall. The solutions obtained in
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Fig. 9. Spectral response for theTE01 modes of the structure shown in
Fig. 8. Results were calculated using the FFT method with 160 000, 190 000,
and 210 000 FDTD samples, and using the LP method with 4500 FDTD
samples.

each case are labeled asTE01e andTE01h modes, respectively. The
coupling factor is calculated simply as

k ' 2
f01e � f01h

f01e + f01h
: (3)

However, to show the resolution improvements of the LP technique
with respect to the FFT method, we have analyzed this structure
without considering symmetries (the resonant frequency of the two
modes are obtained in the same simulation). We have used an FDTD
mesh of 48� 80 cells. The size of the unit cell is�r = 0:12275 mm
and�z = 0:361 mm. The structure has been excited with a Gaussian
pulse with a length of 800 FDTD samples. Since we are analyzing
a lossless structure, the resonant frequencies have been computed by
using the forward–backward LP formulation. We have considered
a window with data from the 1000–4500th FDTD iteration. The
parameters used areD = 25 andL = 70. When the FDTD response
is highly oversampled (as in this case), the use of high decimation
factors is a way of improving the resolution of the LP method [14].
Ideally, the frequency band of interest should be expanded in the
whole Nyquist range. The spectral response obtained for theTE01e

and TE01h modes is shown in Fig. 9. This figure also shows the
results obtained by using the FFT method for different numbers of
FDTD iterations. It can be seen that with the FFT method at least
160 000 FDTD samples are required to discriminate the two peaks.
For the curves computed by the FFT approach, we have applied zero
padding to 512 000 data samples. Table II compares the results for
the resonant frequencies and the coupling factor computed by using
the FDTD method in two different situations: analyzing the whole
structure in one simulation, and taking into account the symmetry wall
to perform the analysis in two different simulations, thus avoiding
problems of spectral resolution. These results are also compared
with those obtained by using the mode-matching (MM) method [15],
showing good agreement. Note that we are using a uniform FDTD
mesh and, hence, the radius of the cavity has been approximated by
R3 ' 48�r = 5:892 mm, which means there is an error of 0.46%
in this dimension.

IV. CONCLUSION

This paper has dealt with the way LP techniques can be applied
to obtain the frequencies and damping factors from the FDTD
response of resonant structures. The formulation adopted is based
on expressing the LP problem in the TLS sense and solving the
resulting set of homogeneous linear equations by means of the

TABLE II
COMPARISON OF THERESULTSCALCULATED FOR THE STRUCTURESHOWN IN FIG. 8
USING THE FDTD METHOD AND THE MM M ETHOD. FOR THE FDTD METHOD,

THE RESULTS HAVE BEEN OBTAINED IN ONE SIMULATION (*), AND IN TWO

SIMULATIONS, TAKING INTO ACCOUNT THE SYMMETRY WALL (**)

SVD algorithm. This approach provides an effective criterion for
determining the order of the model. For lossy structures, the backward
LP technique is used. This provides a simple way of separating the
poles that correspond to the resonant modes from the rest. For lossless
structures, the forward–backward LP method is applied. It has been
shown that in the case where the order of the model is too high, it
can be reduced by using a pulse waveform to excite the structure
in the FDTD simulation or by low-pass filtering the time-domain
response. These techniques for reducing the model order improve
the efficiency of the method. It has also been shown that in cases
where two resonances are very close to each other, the LP method
is still capable of computing them with good accuracy and from
relatively short FDTD responses. By contrast, when the same situation
is handled using the FFT method, we need sequences that are at least
some 35 times longer.
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