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wide variety of electromagnetic problems. For a given excitatiofRDTD simulation, the presence of nonexponential signalg.irand
waveform, this method directly provides the time-domain responsgen exponential terms not included dn. The complex quantities
of the structure under analysis. However, the spectral response= exp(é; + j2x f;)At are the poles of the noiseless sigmal

is usually required for computer-aided design (CAD) purposes in

microwave circuits. Traditionally, the frequency-domain results hayg The LP Technique

been obtained by computing the fast Fourier transform (FFT) of the
time-domain data. The main disadvantage of the FFT approach
the distortion of the spectral response that results from applying thﬁs
approach to an FDTD response truncated in time. Therefore, the ftu
FDTD response must be computed to obtain reliable results. Unfortu
nately, due to their higQ)-factor, microwave circuits usually exhibit

a very long transient response, which leads to time-consuming FDT
simulations. This limitation is particularly dramatic in resonant-type
problems, where the accurate determination of the number of peaks
in the spectral response (their locations and widths) is of capital
importance.

To overcome the limitations of the FFT approach, a number of
alternative spectral-analysis procedures have recently been proposed
[1]-[7]. Roughly speaking, these methods are based on fitting the3
early FDTD response to a model. This allows the remaining part
of the time-domain response to be computed by extrapolation, thus
avoiding truncation problems. Additionally, the spectral response can
be derived analytically by simply taking thetransform of the model.
The main problems with these methods are the difficulty involved in
determining the order of the model, and their sensibility to noise in
the data.

This paper discusses the application of the linear-prediction (LP)
technique, which allows the parameters of interest to be extracted
accurately and efficiently from the early FDTD response of resonant-
type problems. These parameters are usually the resonant frequencies
and the damping factors (ap-factors) of the structure. The LP
equations are formulated in the total least squares (TLS) sense and
solved by using the singular-value decomposition (SVD) algorithm.
This approach confers robustness to the LP technique and provides
a simple and effective criterion for the selection of the order of the
model. To illustrate the application of this technique, we have consid-
ered two types of resonant problems: the determination of phase and
attenuation constants of waveguides loaded with lossy dielectrics, and
the computation of resonant frequencies of cylindrical cavities loaded
with dielectric ring resonators. For the first problem, the results are
compared with those obtained using a commercial simulator based on
the finite element (FE) method, while for the second one, comparisons
are made with data available in the literature. For both cases, thé®)
agreement is found to be good.

1

Il. BACKGROUND OF LP TECHNIQUES

A. The Underlying Signal Model

~In this paper, an indirect method—the LP technique—is used to
oBtain the parameters of (1). This technique can be summarized in
? following steps.

The true ordef” is not usually known beforehand, so an initial
estimation of P, denoted byL, is chosen.

) A TLS—LP problem is built up from the available time-domain

data. For lossy structures, the backward approach is chosen,
which leads to aiiN — L) x (L + 1) homogeneous system of
linear equations. However, for lossless nonradiative structures,
the forward—backward LP technique is used, resulting in an
2(N — L) x (L+ 1) homogeneous system of linear equations
[8].

) The above TLS-LP problem is solved by using the SVD

algorithm. The number of underlying exponential®) (is
estimated to be the number of the largest singular values of the
data matrix. This is a simple and effective way to determine
the order of the model, and is, in fact, a true noise-filtering
process of the time-domain data [9].

4) The z-transform of the LP model is obtained. This allows

the discrete-time Fourier transform of the time-domain data
to be calculated without truncation problems by evaluating

it on the unit circle of thez-plane. This procedure may be
used in applications such as the calculatiorbgfarameters of
microwave structures because, in these cases, only the shape
of the spectral response is required. However, in resonant-type
problems, the contribution of each single exponential term of
(1) to the whole spectral response must be determined. To
do this, the poles; of the z-transform of the LP model are
computed.

) Once theL poles z; have been calculated, th& poles

corresponding to the underlying exponentials must be separated
from the others. For the backward formulation, the signal poles
corresponding to the exponentials fall outside the unit circle
in the z-plane, while the other poles remain inside the unit
circle [10]. For the forward—backward formulation, tRepoles
closest to the unit circle are the signal poles [11].

Finally, the resonant frequencies and damping factor are com-
puted directly from the signal poles.

A PPLICATION OF THELP TECHNIQUE TO FDTD RESPONSES

A. Full-Wave Analysis of Guiding Structures

For a resonant structure, the FDTD transient response recorded &0 obtain the dispersion characteristics of a uniform guiding

a fixed spatial point can be expressed as a superposition of compiicture, we adopt a transverse resonance approach [12], [13]. This

exponentials

P
y(kAE) = yp =2 +np = Y hi exp[(8i + j27 fi)kAL] + ny,
i=1

k=0, ---,N—-1 (1)

whereAt is the FDTD time stepk is the time index, ang: denotes
the observed FDTD sequence of length The model parameters,

approach consists of selecting a value of the phase constast

an input parameter. The time-domain response to a given excitation
waveform is computed and, finally, the resonant frequengieand
damping factors; of the resonant modes are obtained by applying
the technigues described in Section Il. The pair of paraméfers; )
corresponds to théth propagating mode in such a way that at
frequencyf; this mode has the value @f previously selected, and

a value of the attenuation constant givenday= 6; /vy, wherevg;

fi, andé; represent the complex amplitude, frequency, and dampiigythe group velocity. By changing the value @fand repeating this
factor of theith resonant mode, respectively. Singe is a real- process, we can obtain the whole dispersion diagram.

valued sequence, the complex exponentials occur in conjugate pairsio illustrate the application of the LP technique to compute the
hence, the order of the modét is twice the number of resonantresonant frequencies and damping factors, we first consider the
modes. The sequeneg accounts for the finite-precision errors of thecalculation of the dispersion characteristics of fAE,, modes of
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Fig. 1. Singular values for th&#'E,, modes of WR-90 waveguide filled Fig. 4. Singular values for th& E,,,,, modes of a WR-90 waveguide filled

with a dielectric ofe, =1 ando = 0.001 S/m. FDTD mesh: ten unit cells. with a dielectric ofe,, = 1 ando = 0.001 S/m. FDTD mesh: 10< 10 unit

LP input parametersN' = 100, D = 1, and L = 50. cells. LP input parametersy = 400, D = 1, L = 200. Three different cases
are shown: using initial conditions, Gaussian pulse, and low-pass filtering of
the FDTD response.

180

150 | ; - and a value for the initial order of = 50. The singular values,
7 . . . computed by using the backward LP formulation, are shown in Fig. 1.
a 120 : . They have been sorted in decreasing order. As expected, there are 18
K 90 : . dominant singular values, which determine the order of the model. A
e I . large gap is observed between the dominant singular values and all
ﬁ 60 | ! . the others. Fig. 2 shows the poles of the LP model. They have been
& ! . reflected with respect to the unit circle of theplane, so that the poles
30 .- Break having modulus less than one correspond to the waveguide modes.
I . [ For clarity, only half of the poles have been plotted, the remaining
0 ‘ ‘ — L : poles are their complex conjugates. Finally, the spectral response

098 L0O0 102 104 106 108 306 308 3.10 of the structure is plotted in Fig. 3 for the whole Nyquist range.
Modulus There are two curves: the solid curve was obtained vitth= 18
Fig. 2. Poles of the LP model for the same case as in Fig. 1. (the correct order), and the dashed curve with= 12 (retaining
the first 12 singular values). It can be seen that an underestimation
of P produces a true filtering of the spectral response. We have
10 observed that the highest singular values belong to the modes with
i the largest amplitudes; therefore, the filtered modes are those that
have the smallest amplitudes. However, this filtering process affects
all modes, in this case, mainly acting on their damping factors.

For more complex structures, the number of excited modes and,
hence, the order of the model, is usually excessively large. For
example, if we simply consider the same WR-90 waveguide of the
previous example as a two-dimensional (2-D) problem and use a
discretization of 10x 10 cells, the expected number GfE,,
modes is 81. To overcome this problem, we propose two different
Sl alternatives: using a Gaussian pulse to excite the problem structure
100 b WY EUEE TS NS | S D or applying a low-pass digital filter to the FDTD response. Both

0 10 20 30 40 50 60 70 approaches allow us to greatly attenuate the higher order modes.

Frequency (GHz) These modes are not of interest because they are not resolved with
enough accuracy by the FDTD mesh. Fig. 4 shows the singular values
obtained for this example with an initial order &f = 200. When
using initial conditions, a nonabrupt transition is observed between
a WR-90 waveguide completely filled with a lossy dielectric materidhe dominant singular values and all the others. For nonabrupt
of dielectric constant, = 1 and conductivitys = 0.001 S/m. This transitions, it is better to overestimal® say,P = 142 for this case.
structure is discretized using an FDTD mesh of only ten unit celld.the guide is excited with a Gaussian pulse, we observe an additional
Initial conditions are imposed at the grid point= 3Ax, whereAx is  gap, which is due to the fact that the Gaussian excitation concentrates
the spatial step. The FDTD response foe= 158.24 rad/m (the exact the energy on the modes with lower resonant frequencies. This allows
value of 5 for the TE;o mode at 10 GHz) is recorded at= 7Ax. us to consider as dominant modes those that correspond to the first
In this case, as a consequence of the chosen spatial discretizagjap, so we can take a model order of abdut= 20. The same
and of the simplicity of the structure, we know beforehand that thetuation is found when the time-domain signal is low-pass filtered.
number of resonant modes is nine and, hence, the order of the motte higher the attenuation of the filter, the larger the gap obtained in
is P = 18. To verify this value, we have carried out an SVD ofthe magnitude of the singular values. For a larger gap, the accuracy
the data matrix by using the first 100 samples of the FDTD responsigtained in the exponential model parameters is better. Both the pulse

Electric Field (Normalized)

Fig. 3. Spectral response for the same structure as in Fig. 1.
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A ‘ TABLE |
COMPARISON OF RESULTS FOR THEWAVEGUIDE SHOWN IN FIG. 5 OBTAINED
BY USING THE FDTD MEeTHOD WITH SEVERAL SPATIAL DISCRETIZATIONS
GIVEN BY 8! x 61, AND BY USING THE HIGH-FREQUENCY
STRUCTURE SIMULATOR (HFSS)

Mesh 1st mode 2nd mode
l f(CHz) 6 (ns™Y) « (Np/m) || f (GHz) & (ns™!) « (Np/m)
Fig. 5. WR-90 waveguide loaded with twd{-plane dielectric slabs. .
A= 2286 mm, B = 1016 mm, W = A/4, S = A/8, H = B/, 3 9.959  0.0397 0.20 13.001 0122 1.69
e =12, 0 = 0.1 S/m. 4 9.976 00436 0.22 13140 0131 1.82
1
~ 5 9981  0.0461 0.23 13163 0.138 191
7 ~
% - 6 9.988  0.0478 0.24 13177 0.142 1.97
o -
O -
i/ e oc 10.003  0.0576 0.29 13214 0.167 2.32
<
E \\ HEFSS 10.000 - 0.29 13.210 - 2.29
>
2 ™~
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Fig. 6. Singular values for the structure shown in Fig. 5. FDTD mesh: 8
48 x 36 cells. Excitation: Gaussian pulse. LP input parametdrs= 200, Z
D = 10, and L = 100. %
. . . . . . o -2
excitation and filtering approach are techniques that effectively reducg 10
the order of the model. Furthermore, these techniques allow Iowe'g
values forL to be used, improving the efficiency of the LP method. 5
As an example of a structure of more practical interest, we have o ‘ ‘

considered a WR-90 waveguide loaded with tWeplane dielectric
slabs. This structure is depicted in Fig. 5. The simulations were
carried out for3 = 183.17 rad/m. The time-domain response
was obtained by using a Gaussian excitation with a length of 4@ 7. spectral response for the waveguide of Fig. 5¥et 183.17 rad/m.
FDTD samples. To perform the spectral analysis of the FDTD

response, we consider a window of 2000 samples (from the 500th

0 5 10 15 20 25 30 35
Frequency (GHz)

to the 2500th FDTD iteration). The time samples recorded while the /SYMMETRY PLANE
excitation was switched on are not considered. Since FDTD usually
gives oversampled responses, the data contained in the window are S . H 5/2

decimated with a decimation factér = 10. In other words, only one

in every ten samples is retained and, as a consequence, the number
of samples is reduced t& = 200. Fig. 6 shows the singular values
obtained withL = 100. From this figure, we estimate a model order

of P = 40. The spectral response obtained for this case is plotted
in Fig. 7. Table | shows the results obtained for the frequencies,
damping factors, and attenuation constants of the first two modég- & . [()33yllindricil 204"’“3’”3% 'O_E‘d;ir;"’ith o _diglg%tfic Rring Jesonators.
of this structure. We have considered four different discretization$' = 5 ¢} n"°g = 55~ MM, &= 05802, Ha = 2298,
given by8! x 6! wherel is a parameter that takes values 3, 4, 5, and

6, as shown in Table |I. The curve

B C B. Characterization of Dielectric Resonators
TR B The second resonant-type problem addressed in this paper is
tq% characterization of cavities loaded with dielectric resonators. In

has been used to model the convergence behavior of the resu Scular w nsider th mputation of the resonant fr. nei
as a function ofl, where¢ is the parameter of interest (frequenc;jJa cular, we consider the computation of the resonant Irequencies

or attenuation factor) andl, B, and C' are the constants to beof the TEo: modes of a cylindrical cavity loaded with two ring
determined. The extrapolated values foe= oo are also shown in dielectric resonators, as shown in Fig. 8. An accurate determination of
Table I. These values are in excellent agreement with those obtaiia@ "eésonant frequencies is important in order for the mutual coupling
using a commercial simulator based on the FE method. factor of the resonators to be obtained. This can be done by taking
advantage of the symmetry of the structure. First, the problem is
L High-Frequency Structure SimulatcdRelease 3.0, Hewlett-Packard, Sants50/ved with a perfect electric wall in the symmetry plane; then, it is
Rosa, CA. solved again with a perfect magnetic wall. The solutions obtained in
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1 TABLE 1l
10 E CoMPARISON OF THERESULTS CALCULATED FOR THE STRUCTURE SHOWN IN FIiG. 8
|~ FFT (260.0c3 Samples) UsING THE FDTD MEeTHOD AND THE MM M ETHOD. FOR THE FDTD METHOD,
 FFT(210.0e3 Samples) THE ReESULTS HAVE BEEN OBTAINED IN ONE SIMULATION (*), AND IN Two

0 o 4 .
oL E‘;T ((3‘65%263321:“;"]2')“) SIMULATIONS, TAKING INTO ACCOUNT THE SYMMETRY WALL (**)

=)
Q
N
=
E
o
Zz 4t FDTD* FDTD* MM [16
5 10
é’ fore (GHz) 11.9646  11.9646  11.9684
] -
B 10° Joun (GHz) 119431 11.9429  11.9476
o]
o
55| k 1.80 107% 1.82 107% 1.74 1073
-3
0w - e
11.85 119 11.95 ” 12.05 fo=+Tote foun | 11.9538  11.9537  11.9580

Frequency (GHz)

Fig. 9. Spectral response for ko modes of the structure shown in Sv/p algorithm. This approach provides an effective criterion for
Fig. 8. Results were calculated using the FFT method with 160 000, 190 O

and 210000 FDTD samples, and using the LP method with 4500 FD1Q@mrmining the order of the model. For lossy structures, the backward
samples. ’ LP technique is used. This provides a simple way of separating the

poles that correspond to the resonant modes from the rest. For lossless
_ structures, the forward—backward LP method is applied. It has been
each case are labeled @&, andTEq., modes, respectively. The shown that in the case where the order of the model is too high, it

coupling factor is calculated simply as can be reduced by using a pulse waveform to excite the structure
fore — foin in the FDTD simulation or by low-pass filtering the time-domain
ko~ 2 ?3) . . .
fote + foin response. These techniques for reducing the model order improve

o . the efficiency of the method. It has also been shown that in cases
However, to show the resolution improvements of the LP techniqye e e two resonances are very close to each other, the LP method

with respect to the FFT method, we have analyzed this structygeqyiy capable of computing them with good accuracy and from
without considering symmetries (the resonant frequency of the tWoatively short FDTD responses. By contrast, when the same situation

modes are obtained in the same simula_tion). We have. ussfi an FDlg%andled using the FFT method, we need sequences that are at least
mesh of 48x 80 cells. The size of the unit cell &+ = 0.122 75 mm some 35 times longer.

andAz = 0.361 mm. The structure has been excited with a Gaussian
pulse with a length of 800 FDTD samples. Since we are analyzing

a lossless structure, the resonant frequencies have been computed by
using the forward—backward LP formulation. We have consideregh] z. Bi, Y. Shen, K. Wu, and J. Litva, “Fast finite-difference time-
a window with data from the 1000-4500th FDTD iteration. The domain analysis of resonators using digital filtering and spectrum
parameters used a2 = 25 and L = 70. When the FDTD response estimation techniquesfEEE Trans. Microwave Theory Teclhol. 40,

. R K . . . . . 1611-1619, Aug. 1992.
is highly oversampled (as in this case), the use of high demmanom f]’.pA. Pereda, L. A. g\]ﬁelva, A. Vegas, and A. Prieto, “Computation of

factors is a way of improving the resolution of the LP method [14]." * resonant frequencies and quality factors of open dielectric resonators by
Ideally, the frequency band of interest should be expanded in the a combination of the finite-difference time-domain (FDTD) and Prony’s
whole Nyquist range. The spectral response obtained foflfhe . methods,”IEEE Microwave Guided Wave Lettvol. 2, pp. 431-433,

; ; ; P Nov. 1992.
and ITEml;’ r.nozez IS s.hOWE in Fig. 9. r;rh(;sfflglé'.’; also Shovl\;s the?] B. Houshmand, T. W. Huang, and T. ltoh, “Microwave structure
results obtained by using the FFT method for different numbers o characterization by a combination of FDTD and system identification

FDTD iterations. It can be seen that with the FFT method at least methods,”IEEE Microwave Guided Wave Lettol. 3, pp. 262—264,
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